

 Page 1 of 75 “Rational Support Whitepaper”

Container Link Support in Rational

Application Developer for WebSphere

Software v7.5

Tips to create J2C Java beans and ant scripts using J2C Bean wizard from a Cobol

file that contains CICS Channels and Containers Commands

Laszlo Benedek & Ivy Ho

February 27, 2009

 Page 2 of 75 “Rational Support Whitepaper”

REQUIREMENTS .. 3

INTRODUCTION .. 4

CICS CHANNEL INTRODUCTION ... 5

CICS CHANNEL .. 5

CICS SAMPLE COBOL PROGRAM EC03 ... 6

J2C TOOLS FOR CICS CHANNEL SUPPORT .. 9

DATA BINDING GENERATION IN CICS/IMS DATA BINDING WIZARD 11

GENERATED CODE ... 21

J2C JAVA BEAN GENERATION THAT SUPPORTS CICS CHANNEL
COMMANDS ... 22

GENERATED CODE ... 29

DEPLOYING J2C JAVA BEAN .. 32

DEPLOYING J2C JAVA BEAN USING THE STANDALONE DEPLOYMENT
WIZARD ... 32

DEPLOYING J2C JAVA BEAN AS PART OF THE J2C JAVA BEAN CREATION 39

J2C ANT SCRIPTS SUPPORT .. 40

ANT SESSION RECORDING FOR CICS CHANNEL SUPPORT 40

LAYOUT OF DATA BINDING ANT SCRIPTS .. 41

LAYOUT OF J2C JAVA BEAN ANT SCRIPTS .. 46

CUSTOMIZATION ... 49

QUERYRESULT ... 54

DISCOVERY AGENT ... 55

RESOURCE WRITER .. 57

RUNNING ANT SCRIPT .. 60

RUNNING ANT SCRIPT IN THE WORKSPACE ... 60

RUNNING ANT SCRIPT FROM COMMAND LINE .. 66

TIPS ... 69

SUMMARY ... 74

RESOURCES ... 74

ABOUT THE AUTHORS ... 75

 Page 3 of 75 “Rational Support Whitepaper”

Requirements

You should have Rational Application Developer for WebSphere Software v7.5

with J2EE Connector (J2C) Tools installed if you want to follow the steps.

The article assumes the reader has some basic knowledge of ant scripts. We will

not explain the basics of how the ant script works. J2C ant scripts are already

supported in Rational Application Developer for WebSphere Software v7, we will

only explore the specifics for the CICS Container Link support in the generated

ant script.

If you are interested in the basics of J2C ant script, this paper Working with J2C

Ant Scripts in Rational Application Developer v7 will give you some basic

knowledge.

http://ltsbwass001.sby.ibm.com/cms/developerworks/rational/library/06/1205_ho-benedek/
http://ltsbwass001.sby.ibm.com/cms/developerworks/rational/library/06/1205_ho-benedek/
http://ltsbwass001.sby.ibm.com/cms/developerworks/rational/library/06/1205_ho-benedek/

 Page 4 of 75 “Rational Support Whitepaper”

Introduction
Level: Intermediate

In IBM Rational Application Developer for WebSphere Software version 7.5, one

of the key features in J2C Connector Tools is the CICS Channel Support. You can

generate J2C Java Beans and Data binding files from importing Cobol source that

contains CICS Channel commands. You can save the settings into an Ant script
when you go through the J2C Bean wizard or the CICS/IMS Data Binding wizard.

This article is divided into two major sections.

1. The first section is for readers who are interested in using the tooling for

CICS Container Link Support in Rational Application Developer v7.5.

2. The second section is for users who like to explore the generated ant

scripts. The sample ant scripts included in this article were created using
these J2C Tools.

 Page 5 of 75 “Rational Support Whitepaper”

CICS Channel Introduction

CICS Channel

In the past, CICS application programs use communication area COMMAREA to

exchange data. The new CICS Channel support enhances how data is transferred
between programs.

Containers are named blocks of data designed for passing information between

programs. You can think of them as named communication areas (COMMAREAs).

Programs can pass any number of containers between each other. Containers are

grouped together in sets called channels; a channel is analogous to a parameter
list.

Here are some of the benefits of Channel/Container model over COMMAREA:

 Unlike COMMAREA, channels are not limited in size to 32KB. There is no

limit to the number of containers that can be added to a channel, and the

size of individual containers is limited only by the amount of storage that

you have available.

 Because a channel can comprise multiple containers, it can be used to

pass data in a more structured way. In contrast, a COMMAREA is a

monolithic block of data.

 Unlike COMMAREAs, channels don't require the programs that use them to

know the exact size of the data returned.

 Page 6 of 75 “Rational Support Whitepaper”

CICS Sample Cobol Program EC03

This sample server program listing1 below demonstrates the use of channels and

containers in a CICS program. It queries the length of data in a container and

places the length, the current date and the current time into containers

InputDataLength, CurrentDate and CurrentTime respectively. A message

indicating success or failure is returned in container OutputMessage. If no channel
is passed to the program it abends with abend code NOCH.

EC03 is a Basic CICS Server Cobol sample program which is used with the

frontend sample programs to demonstrate the use of External Call Interface (ECI)
with channels and containers.

The following code is sample code created by IBM Corporation. This sample code

is not part of any standard IBM product and is provided to you solely for the

purpose of assisting you in the development of your applications. The code is

provided 'as is', without warranty or condition of any kind. IBM shall not be liable

for any damages arising out of your use of the sample code, even if IBM has been
advised of the possibility of such damages.

Listing 1.Samples CICS program with Channels

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EC03.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * Container names

 01 DATECONTAINER PIC X(16) VALUE 'CurrentDate'.

 01 TIMECONTAINER PIC X(16) VALUE 'CurrentTime'.

 01 INPUTCONTAINER PIC X(16) VALUE 'InputData'.

 01 OUTPUTCONTAINER PIC X(16) VALUE 'OutputMessage'.

 01 LENGTHCONTAINER PIC X(16) VALUE 'InputDataLength'.

 * Data fields used by the program

 01 INPUTLENGTH PIC S9(8) COMP-5.

 01 CURRENTTIME PIC S9(15) COMP-3.

 01 CHANNELNAME PIC X(16) VALUE SPACES.

 01 OUTPUTSTRING PIC X(72) VALUE SPACES.

 01 DATESTRING PIC X(16) VALUE SPACES.

 01 TIMESTRING PIC X(16) VALUE SPACES.

 01 RESPCODE PIC S9(8) COMP-5.

 01 RESPCODE2 PIC S9(8) COMP-5.

 PROCEDURE DIVISION.

 MAIN-PROCESSING SECTION.

 * Get name of channel

 EXEC CICS ASSIGN CHANNEL(CHANNELNAME)

 END-EXEC.

 Page 7 of 75 “Rational Support Whitepaper”

 * If no channel passed in, terminate with abend code NOCH

 IF CHANNELNAME = SPACES THEN

 EXEC CICS ABEND ABCODE('NOCH') NODUMP

 END-EXEC

 END-IF.

 * Read content length of container InputData

 EXEC CICS GET CONTAINER(INPUTCONTAINER)

 CHANNEL(CHANNELNAME)

 NODATA FLENGTH(INPUTLENGTH)

 INTOCCSID(037)

 RESP(RESPCODE)

 RESP2(RESPCODE2)

 END-EXEC.

 * Check response code

 EVALUATE RESPCODE

 * Container not passed in

 WHEN DFHRESP(CONTAINERERR)

 STRING INPUTCONTAINER

 DELIMITED BY SPACE

 ' container was not passed to the program'

 DELIMITED BY SIZE

 INTO OUTPUTSTRING END-STRING

 * Container is BIT not CHAR

 WHEN DFHRESP(CCSIDERR)

 IF RESPCODE2 = 3

 STRING 'Container '

 DELIMITED BY SIZE

 INPUTCONTAINER

 DELIMITED BY SPACE

 ' type is BIT, not CHAR'

 DELIMITED BY SIZE

 INTO OUTPUTSTRING END-STRING

 END-IF

 * Read from container OK

 WHEN DFHRESP(NORMAL)

 STRING 'Read from '

 DELIMITED BY SIZE

 INPUTCONTAINER

 DELIMITED BY SPACE

 ' container successfully'

 DELIMITED BY SIZE

 INTO OUTPUTSTRING END-STRING

 EXEC CICS PUT CONTAINER(LENGTHCONTAINER)

 FROM(INPUTLENGTH)

 FLENGTH(LENGTH OF INPUTLENGTH)

 BIT NOHANDLE END-EXEC

 * Other response code

 WHEN OTHER

 STRING 'The GET CONTAINER command returned an',

 Page 8 of 75 “Rational Support Whitepaper”

 ' unexpected response code'

 DELIMITED BY SIZE

 INTO OUTPUTSTRING END-STRING

 END-EVALUATE.

 * Place output string in container OutputData

 EXEC CICS PUT CONTAINER(OUTPUTCONTAINER)

 FROM(OUTPUTSTRING)

 FLENGTH(LENGTH OF OUTPUTSTRING)

 CHAR FROMCCSID(037)

 END-EXEC.

 * Get the current time and date

 EXEC CICS ASKTIME ABSTIME(CURRENTTIME)

 END-EXEC.

 * Format date and time

 EXEC CICS FORMATTIME ABSTIME(CURRENTTIME)

 DDMMYYYY(DATESTRING) DATESEP('/')

 TIME(TIMESTRING) TIMESEP(':')

 END-EXEC.

 * Place current date in container CurrentDate

 EXEC CICS PUT CONTAINER(DATECONTAINER)

 FROM(DATESTRING)

 FLENGTH(LENGTH OF DATESTRING)

 CHAR FROMCCSID(037)

 END-EXEC.

 * Place current time in container CurrentTime

 EXEC CICS PUT CONTAINER(TIMECONTAINER)

 FROM(TIMESTRING)

 FLENGTH(LENGTH OF TIMESTRING)

 CHAR FROMCCSID(037)

 END-EXEC.

 * Finish

 EXEC CICS RETURN END-EXEC.

 EXIT.

 Page 9 of 75 “Rational Support Whitepaper”

J2C tools for CICS Channel Support

The J2C Tools in Rational Application Developer for WebSphere Software v7.5

provide CICS Channel Support in different ways.

Wizards Support

You can create the J2C generated artifacts for CICS Channel Support using J2C

wizards. The two wizards also support ant script generation. It enables you to go

through the wizard once, choose the CICS Channel to Java Mapping and record
the user options and data in an Ant script file.

The two wizards are:

1. CICS IMS Data Binding wizard: It will generate one or more data binding

files.

2. J2C Java Bean wizard: It will generate J2C beans, import resource
adapters as well as data binding files.

Samples Support

There are prebuilt samples where you can import into your workspace and

explore the generated code. You can execute the generated code if you install the

Cobol CICS channel copy book to your CICS system.

The sample is located in Help > Samples > Technology samples > Java >

J2C Samples > CICS Adapter samples > Container link support

Figure 0. CICS container Sample

 Page 10 of 75 “Rational Support Whitepaper”

Deployment Support

The deployment support is not specific to the CICS Container Link. It is a generic

support for all generated J2C Java beans since Rational Application Developer for

WebSphere Software v7. There is a deployment wizard in J2C Tools for you to

deploy the generated J2C Java bean into faces JSP, simple JSP, Web Service and

EJBs. You can just use simple JSP to unit test your generated code without
writing any client code.

There are two flows for deployment:

 You can go through the deployment as part of the flow when you create

J2C Java beans.

 You can create J2C Java beans and invoke the deployment wizard

separately.

 The J2C ant script generated during wizard flow does not include
deployment information. It only records options for code generation.

 Page 11 of 75 “Rational Support Whitepaper”

Data Binding generation in CICS/IMS Data Binding
wizard

The CICS IMS Data Binding wizard allows you to generate data binding files based

on the Cobol, C or PL/1 source. When you go through the wizard, you have to

select different options in the wizard before you can generate the data binding

files. The Ant script support will save all the settings in the data binding Ant script
file.

Figure 1 shows you how to launch the CICS IMS Data Binding wizard.

1. Select File > New > Other.
2. Select J2C > CICS IMS data Binding.

Figure 1. CICS IMS Data Binding wizard

 Page 12 of 75 “Rational Support Whitepaper”

1. Click Next in the CICS IMS Data Binding wizard to launch the Data Import

page.

2. Choose COBOL CICS Channel to Java, C Language CICS Channel to

Java or PL1 CICS Channel to Java mapping.

Figure 2. Choose COBOL CICS Channel to Java Mapping

3. Select the Cobol, PL1, or C source file.

There is a sample CICS Channel Cobol source ec03.cpp located in the

Rational Application Developer for WebSphere Software install shared

folder under the plug-in com.ibm.j2c.cheatsheet.content.v7.0.1.xxxx.

 Page 13 of 75 “Rational Support Whitepaper”

Figure 3. Import Cobol source

4. Click Next to launch the Importer page.

5. Select the importer settings and the data structure to be imported.

For the sample ec03.cpp, select

DATECONTAINER,INPUTCONTAINER,TIMECONTAINER,OUTPUTCONTAINER
and LENGTHCONTAINER from the data structures section.

 Page 14 of 75 “Rational Support Whitepaper”

Figure 4. Select data structure from Cobol source

6. Click Next to launch the Saving Properties Page shown in Figure 5.

Click on the CICS Channel, enter the Project name, Package Name, Class

Name and Channel Name. Enter EC03ChannelRecord as CICS channel
java class name and InputRecord as channel Name.

You will select the Save session as Ant script checkbox to use the Ant

script feature. The default Data Binding Ant Script file name is the name of

the Channel Data binding class name. The default location of Ant script will

be the current Project where the Channel Data Binding is generated. You
can change the name and location for the Ant script generation.

The Save All Settings option is useful if you would like to generate the

values for all the settings when you go through the wizard. In this way, it

is like you have generated a template for all the properties. If you do not

select the Save All Settings option, only the option that you modify or

 Page 15 of 75 “Rational Support Whitepaper”

enter when you go through the CICS IMS Data Binding wizard will be

generated. For example, the default value for Generation Style is

Default. The Generation Style will be generated in the Ant script only if

you select another style like Shorten names.

Figure 5.Enter CICS Channel properties in Saving Properties Page

For each of the data structures (Container) under the CICS channel, enter

the corresponding Package Name, Class Name, Channel Name and

Container names. Select the Container Type for each of the Container as
indicated below.

 Page 16 of 75 “Rational Support Whitepaper”

Data Structure Container Name Container Class

Name
Container

Type

DATECONTAINER CURRENTDATE DateContainer CHAR

TIMECONTAINER CURRENTTIME TimeContainer CHAR

OUTPUTCONTAINER OUTPUTMESSAGE OutputContainer CHAR

INPUTCONTAINER INPUTDATA InputContainer CHAR

LENGTHCONTAINER INPUTDATALENGTH LengthContainer BIT

Figure 6.Enter DateContainer properties in Saving Properties

 Page 17 of 75 “Rational Support Whitepaper”

Enter TimeContainer as Java class Name

Figure 7.Enter TimeContainer properties Saving Properties

 Page 18 of 75 “Rational Support Whitepaper”

Enter InputContainer as Container Java class Name

Figure 8.Enter InputContainer Saving Properties

 Page 19 of 75 “Rational Support Whitepaper”

Enter OutputContainer as Container Java class Name

Figure 9.Enter OutputContainer properties Saving Properties

 Page 20 of 75 “Rational Support Whitepaper”

Enter LengthContainer as Container Java class Name

Figure 10.Enter LengthContainer properties Saving Properties

7. Click the Finish button to generate the Data Binding files as well as the

ant script.

 Page 21 of 75 “Rational Support Whitepaper”

Generated Code

 For each of the container, there is one Java data binding generated.

 The generated CICS Channel class EC03ChannelRecord.java acts as a

wrapper class for all the containers. It has getter and setter for each of the

container class.
 The CICS Channel class will be used as input and output data type.

 Page 22 of 75 “Rational Support Whitepaper”

J2C Java bean generation that supports CICS
Channel commands

The J2C Java Bean wizard creates a bean that communicates with an Enterprise

Information System. Figure 4 shows where the J2C Java Bean wizard is under the

J2C folder.

To find the J2C Java Bean wizard shown in Figure 11:

1. Select File > New > Other.
2. Select J2C > J2C Java Bean wizard.

Figure 11. J2C Java Bean Wizard

 Page 23 of 75 “Rational Support Whitepaper”

Figure 12 shows the Save session as Ant Script support in the J2C Java Bean
Output Properties page. To go to this page:

1. Select J2C Java Bean wizard and click Next.

2. In the Resource Adapter Selection page, select the resource adapter

ECIResourceAdapter v7.1.0.2 and click Next. The

ECIResourceAdapter v7.1.0.2 provides CICS Channel Support.

3. The Connection Properties page launches. Enter the connection

information and click Next.
4. You will now go to the J2C Java Bean Output Properties page.

Figure 12. J2C Java Bean Output Properties page

In the J2C Java Bean Output Properties page, specify the name of your J2C Java

Bean Interface and Implementation file, as well as the project name and package

name of where they will be generated.

 Page 24 of 75 “Rational Support Whitepaper”

Select the Save session as Ant script checkbox to use the Ant script feature.

The default J2C Java Bean Ant Script file name is the name of the J2C Java Bean

interface. The default location of the Ant script will be the current Project where

the J2C bean is generated. You can change the name and location for the Ant

script generation. The Save All Settings option is useful if you would like to

generate the values for all the settings when you go through the wizard. This is a

good way to capture for informational purposes all of the values that were used,

and it makes it easier for you to change a particular value in the future. If you do

not select the Save All Settings option, only the option that you modify or enter
when you go through the J2C Java Bean wizard will be generated.

After you select the Save session as Ant script option, click Next to go to the
Java Methods Page.

Figure 13. J2C Java Method page

 Page 25 of 75 “Rational Support Whitepaper”

Click the Add button in the Java Methods page to create the Java Method.

In the Java Method Page show in figure 14, enter invoke as the method Name.

Figure 14. J2C Java Method page

Click the Browse button to select the data type to be used for the Input Data

Type.

We will select EC03ChannelRecord which is created in the CICS/IMS Data
Binding as shown in previous section.

 Page 26 of 75 “Rational Support Whitepaper”

Figure 15. J2C Java Method page

Note that when the CICS Channel type is used as Input Data type, the Output

data type is required to be the same.

Click the Finish button to continue.

 Page 27 of 75 “Rational Support Whitepaper”

Figure 16. J2C Java Methods page

In the InteractionSpec properties for invoke method, enter EC03 as the

FunctionName as shown in Figure 17. This functionName has to match your CICS

Cobol server Program id. For the sample EC03.cpp, the Program id is EC03.

Click the Finish button to continue generating the J2C Java Bean interface and
Implementation code.

 Page 28 of 75 “Rational Support Whitepaper”

Figure 17. J2C Java Methods page Function Name

 Page 29 of 75 “Rational Support Whitepaper”

Generated Code

 There will be a J2C Java Bean Interface and Implementation class

generated.

 The method in the class will have CICS Channel class
EC03ChannelRecord.java as the input and output data type.

Figure 18. Generated Code

Doclets

J2C doclet tags enable you to specify particular characteristics of your J2C Java

bean. The J2C Java bean consists of an interface and an implementation class

(Impl.java). The implementation section of the Java bean contains J2C doclets
that you can edit using the tags listed in the following pages.

 Page 30 of 75 “Rational Support Whitepaper”

You can modify the doclets property value e.g. the jndi-name or value of the

functionName, the method body will be regenerated automatically. It is not

recommended to add any user code to the method body; it will be overwritten

once the regeneration of the method body occurs.

Listing 15. Doclets in the generated code

/**

 * @j2c.connectionFactory jndi-name="MyCICS32KJNDIName"

 * @j2c.connectionSpec

class="com.ibm.connector2.cics.ECIConnectionSpec"

 * @generated

 */

public class EC03Impl implements sample.cics.data.EC03 {

 private ConnectionSpec typeLevelConnectionSpec;

 private InteractionSpec invokedInteractionSpec;

 private InteractionSpec interactionSpec;

 private ConnectionSpec connectionSpec;

 private Connection connection;

 private ConnectionFactory connectionFactory;

/**

* @j2c.interactionSpec

class="com.ibm.connector2.cics.ECIInteractionSpec"

* @j2c.interactionSpec-property name="functionName" value="EC03"

* @generated

*/

public sample.cics.data.EC03ChannelRecord invoke(

 sample.cics.data.EC03ChannelRecord arg)

Note that in listing16, there are special tags to the Java source code for the CICS

Container Link support. Some of them are:

 @type-descriptor.CICSChannel
 @type-descriptor.CICSContainer

Listing 16. Doclets in the generated Channel code

/**

 * @generated

 * Generated Class: EC03ChannelRecord

 * @type-descriptor.CICSChannel channel-name="EC03ChannelRecord"

 * @type-descriptor.CICSContainer class-

name="sample.cics.data.OutputContainer"

 * container-name="OUTPUTDATA" container-type="CHAR"

 * @type-descriptor.CICSContainer class-

name="sample.cics.data.DateContainer"

 * container-name="CURRENTDATE" container-type="CHAR"

 * @type-descriptor.CICSContainer class-

name="sample.cics.data.TimeContainer"

 * container-name="CURRENTTIME" container-type="BIT"

 * @type-descriptor.CICSContainer class-

 Page 31 of 75 “Rational Support Whitepaper”

name="sample.cics.data.InputContainer"

 * container-name="INPUTMESSAGE" container-type="CHAR"

 * @type-descriptor.CICSContainer class-

name="sample.cics.data.LengthContainer"

 * container-name="INPUTDATALENGTH" container-type="BIT"

 */

 Page 32 of 75 “Rational Support Whitepaper”

Deploying J2C Java Bean

Deploying J2C Java Bean using the standalone deployment wizard

After you have generated the J2C Java Bean Interface and Implementation, you

can use the Web Page, Web Service, or EJB from J2C Java Bean to deploy as
Simple JSP.

1. Select J2C > Web Page, Web Service, or EJB from J2C Java Bean.

Figure 19. Standalone deployment wizard

 Page 33 of 75 “Rational Support Whitepaper”

2. Select the Browse button to locate the J2C Java Bean

Figure 20. Browse for J2C Java Bean

 Page 34 of 75 “Rational Support Whitepaper”

3. Enter ? in the Find J2C Bean wizard.

A list of files will be displayed for your selection. Select EC03Impl from the
list.

Figure 21. Browse for J2C Java Bean

 Page 35 of 75 “Rational Support Whitepaper”

4. Click Next in the J2C Java Bean Selection page.

Figure 22. J2C Java Bean selection

 Page 36 of 75 “Rational Support Whitepaper”

5. In the Deployment Page, select Simple JSP. Press Next

Figure 23.Deployment wizard

 Page 37 of 75 “Rational Support Whitepaper”

6. Enter Web Project Name and select New button.

Figure 24. Deploying

 Page 38 of 75 “Rational Support Whitepaper”

7. Press Finish button in the New Dynamic Web Project wizard to create the
web project.

Press Finish again in the Deployment page to generate the JSP.

Figure 25. Create Web Project

 Page 39 of 75 “Rational Support Whitepaper”

Deploying J2C Java Bean as part of the J2C Java Bean creation

You will be able to deploy as part of the J2C Java Bean creation. In figure 17 J2C

Java Method Page Function Name, instead of press Finish to generate the J2C

Java Bean, just select the Next button.

Then it will get you to the deployment wizard page in figure 22. Just follow the
same steps (step 4 to step 7) in the above section to deploy as Simple JSP.

Congratulations, you have learned how to generate a CICS Container Link J2C

application using the J2C Tools. If you want to learn about the J2C Ant script

support, you can continue to the next section.

 Page 40 of 75 “Rational Support Whitepaper”

J2C Ant scripts support

Ant session recording for CICS Channel support

In section 1, we show you how to use the wizard to generated J2C Java Beans

and also record a wizard session. The ant session recording enables you to go

through the wizard once, choose the CICS Channel to Java Mapping and record

the user options and data in an Ant script file. The two wizards where the Ant
script generation is supported are:

 CICS IMS Data Binding wizard: The Ant script will generate one or more

data binding files.

 J2C Java Bean wizard: The Ant script will generate J2C beans, import

resource adapters as well as data binding files.

 Page 41 of 75 “Rational Support Whitepaper”

Layout of Data Binding Ant scripts

Layout of Data Binding Ant scripts. See Listing 2 below;

The generated data binding script is composed of targets, tasks, types and

properties. To find out more about how Ant works, go to

http://Ant.apache.org/manual/.

The script has one custom task, discover. The rest of the tags are custom types.

Data discovery occurs in two distinct steps, which can be easily identified in the

sample script with the performImport and writeToWorkspace complex elements
(Ant custom types).

Both custom types contain the necessary data required for language (COBOL,

PL1, or C) file import and (data binding bean) artifact generation.

The import and generation is performed internally, using a Discovery Agent and a

Workspace Resource Writer respectively. Depending on the language file being

imported and the generated artifact type, various implementations can be used.

Each implementation is identified by its ID (javax.xml.namespace.QName).

Language files such as COBOL, C, and PL/1 are some examples for which an

agent implementation exists. In this example, the imported type is a COBOL file

with CICS Channel support. Processing this type of COBOL file uses the same

Discovery Agent as for the MPO case, hence the ID of

{com/ibm/adapter}MPOCobolDiscoveryAgent is used. The same logic applies for

writers as well. The writer ID for COBOL CICS Channel to Java is
"{com/ibm/adapter/cobol/cicschannel/writer}JAVA_WRITER"

The file import (COBOL) data and the data necessary to write the artifact (Java)

is stored using custom property types like propertyElement and propertyGroup.
This is the format the agents and writer can handle.

Note that at the end of the script, we have done a refreshLocal and

incrementalBuild. This is to allow the Annotation builder to regenerate the code in

method body based on all the doclet Tags in the J2C bean and data binding file,

and to synchronize the project.

http://ant.apache.org/manual/

 Page 42 of 75 “Rational Support Whitepaper”

Listing 2.Samples Data Binding Ant scripts with CICS Channel Support

<?xml version="1.0" encoding="UTF-8"? >

<project default="DataBinding1"

 name="/CICS32KSample/EC03ChannelRecord.xml"

 xmlns:adapter="http://com.ibm.adapter" >

 <property name="debug" value="true"/ >

 <property name="project1" value="CICS32KSample"/ >

 <target name="DataBinding1" >

 <adapter:createProject projectName="${project1}"

 projectType="Java"

 sourceFolder="src"/ >

 <adapter:discover >

 <adapter:performImport

agent="{com/ibm/adapter}MPOCobolDiscoveryAgent" >

 <adapter:importResource >

 <adapter:propertyGroup name="CobolFileGroup" >

 <adapter:propertyElement name="CobolFile"

value="D:\IBM\SDP70Shared\plugins\

com.ibm.j2c.cheatsheet.content_7.0.1.

 v20080710-

1450\Samples\CICS32K\ec03.ccp"/ >

 </adapter:propertyGroup >

 </adapter:importResource >

 <adapter:queryProperties >

 <adapter:propertyGroup name="ImportProperties" >

 <adapter:propertyElement name="Platform" value="Win32"/ >

 <adapter:propertyElement name="Codepage" value="ISO-8859-

1"/ >

 <adapter:propertyElement name="Numproc" value="PFD"/ >

 <adapter:propertyElement name="FloatingPointFormat"

value="IEEE 754"/ >

 <adapter:propertyGroup name="ExternalDecimalSignGroup"

>

 <adapter:propertyElement name="ExternalDecimalSign"

value="ASCII"/ >

 </adapter:propertyGroup >

 <adapter:propertyGroup name="EndianGroup" >

 <adapter:propertyElement name="Endian" value="Little"/

>

 <adapter:propertyElement name="RemoteEndian"

value="Little"/ >

 </adapter:propertyGroup >

 <adapter:propertyGroup name="CompileOptions" >

 <adapter:propertyElement name="Quote" value="DOUBLE"/ >

 <adapter:propertyElement name="Trunc" value="STD"/ >

 <adapter:propertyElement name="Nsymbol" value="DBCS"/ >

 </adapter:propertyGroup >

 </adapter:propertyGroup >

 </adapter:queryProperties >

 <adapter:queryResult >

 <adapter:selectElement name="DATECONTAINER"/ >

 <adapter:selectElement name="TIMECONTAINER"/ >

 Page 43 of 75 “Rational Support Whitepaper”

 <adapter:selectElement name="INPUTCONTAINER"/ >

 <adapter:selectElement name="OUTPUTCONTAINER"/ >

 <adapter:selectElement name="LENGTHCONTAINER"/ >

 </adapter:queryResult >

 </adapter:performImport >

 <adapter:writeToWorkspace

writer="{com/ibm/adapter/cobol/cicschannel/writer}JAVA_WRITER" >

 <adapter:propertyGroup name="MPO_PG">

 <adapter:propertyElement name="Project Name"

value="CICS32KSample"/ >

 <adapter:propertyTree name="MPO_TP" >

 <adapter:propertyNode name="COBOLMPOToJavaResourceWriter"

>

 <adapter:propertyGroup name="Java Type Name" >

 <adapter:propertyElement name="Project Name"

value="CICS32KSample"/ >

 <adapter:propertyElement name="Package Name"

value="sample.cics"/ >

 <adapter:propertyElement name="Class Name"

value="EC03ChannelRecord"/ >

 <adapter:propertyElement name="Overwrite existing

class" value="true"/ >

 <adapter:propertyElement name="CHANNEL_NAME"

value="InputRecord"/ >

 </adapter:propertyGroup >

 </adapter:propertyNode >

 <adapter:propertyNode name="COBOLImportResult0" >

 <adapter:propertyGroup name="COBOLToJavaResourceWriter"

>

 <adapter:propertyGroup name="Java Type Name" >

 <adapter:propertyElement name="Project Name"

value="CICS32KSample"/ >

 <adapter:propertyElement name="Package Name"

value="sample.cics"/ >

 <adapter:propertyElement name="Class Name"

value="DateContainer"/ >

 <adapter:propertyElement name="Overwrite existing

class" value="true"/ >

 <adapter:propertyElement name="GenerationStyle"

value="Default"/ >

 <adapter:propertyElement name="CONTAINER_NAME"

value="CURRENTDATE"/ >

 <adapter:propertyElement name="CONTAINER_TYPE"

value="BIT"/ >

 </adapter:propertyGroup >

 </adapter:propertyGroup >

 </adapter:propertyNode >

 <adapter:propertyNode name="COBOLImportResult1" >

 <adapter:propertyGroup name="COBOLToJavaResourceWriter"

>

 <adapter:propertyGroup name="Java Type Name" >

 <adapter:propertyElement name="Project Name"

value="CICS32KSample"/ >

 <adapter:propertyElement name="Package Name"

value="sample.cics"/ >

 <adapter:propertyElement name="Class Name"

 Page 44 of 75 “Rational Support Whitepaper”

value="TimeContainer"/ >

 <adapter:propertyElement name="Overwrite existing

class" value="true"/ >

 <adapter:propertyElement name="GenerationStyle"

value="Default"/ >

 <adapter:propertyElement name="CONTAINER_NAME"

value="CURRENTTIME"/ >

 <adapter:propertyElement name="CONTAINER_TYPE"

value="BIT"/ >

 </adapter:propertyGroup >

 </adapter:propertyGroup >

 </adapter:propertyNode >

 <adapter:propertyNode name="COBOLImportResult2" >

 <adapter:propertyGroup name="COBOLToJavaResourceWriter"

>

 <adapter:propertyGroup name="Java Type Name" >

 <adapter:propertyElement name="Project Name"

value="CICS32KSample"/ >

 <adapter:propertyElement name="Package Name"

value="sample.cics"/ >

 <adapter:propertyElement name="Class Name"

value="InputContainer"/ >

 <adapter:propertyElement name="Overwrite existing

class" value="true"/ >

 <adapter:propertyElement name="GenerationStyle"

value="Default"/ >

 <adapter:propertyElement name="CONTAINER_NAME"

value="INPUTDATA"/ >

 <adapter:propertyElement name="CONTAINER_TYPE"

value="BIT"/ >

 </adapter:propertyGroup >

 </adapter:propertyGroup >

 </adapter:propertyNode >

 <adapter:propertyNode name="COBOLImportResult3" >

 <adapter:propertyGroup name="COBOLToJavaResourceWriter"

>

 <adapter:propertyGroup name="Java Type Name" >

 <adapter:propertyElement name="Project Name"

value="CICS32KSample"/ >

 <adapter:propertyElement name="Package Name"

value="sample.cics"/ >

 <adapter:propertyElement name="Class Name"

value="OutputCiontainer"/ >

 <adapter:propertyElement name="Overwrite existing

class" value="true"/ >

 <adapter:propertyElement name="GenerationStyle"

value="Default"/ >

 <adapter:propertyElement name="CONTAINER_NAME"

value="OUTPUTMESSAGE"/ >

 <adapter:propertyElement name="CONTAINER_TYPE"

value="BIT"/ >

 </adapter:propertyGroup >

 </adapter:propertyGroup >

 </adapter:propertyNode >

 <adapter:propertyNode name="COBOLImportResult4" >

 <adapter:propertyGroup name="COBOLToJavaResourceWriter"

>

 Page 45 of 75 “Rational Support Whitepaper”

 <adapter:propertyGroup name="Java Type Name" >

 <adapter:propertyElement name="Project Name"

value="CICS32KSample"/ >

 <adapter:propertyElement name="Package Name"

value="sample.cics"/ >

 <adapter:propertyElement name="Class Name"

value="LengthContainer"/ >

 <adapter:propertyElement name="Overwrite existing

class" value="true"/ >

 <adapter:propertyElement name="GenerationStyle"

value="Default"/ >

 <adapter:propertyElement name="CONTAINER_NAME"

value="INPUTDATALENGTH"/>

 <adapter:propertyElement name="CONTAINER_TYPE"

value="BIT"/ >

 </adapter:propertyGroup >

 </adapter:propertyGroup >

 </adapter:propertyNode >

 </adapter:propertyTree >

 </adapter:propertyGroup >

 </adapter:writeToWorkspace >

 </adapter:discover >

 <eclipse.refreshLocal depth="infinite" resource="${project1}"/ >

 <eclipse.incrementalBuild project="${project1}"/ >

 </target >

</project >

 Page 46 of 75 “Rational Support Whitepaper”

Layout of J2C Java Bean Ant scripts

The following sample (shown in Listing 3) describes the J2C bean generation

portion of the Ant file generated as a result of J2C Java Bean session recording.

The script is organized into different targets that depend on each other. The

different targets will be executed sequentially according to the dependency.

The script has one task, generateService. The two distinct sections are

buildService and writeToWorkspace. The first section is different from the

previous example, since the service is being built, not discovered. It assumes that

the EC03ChannelRecord.java file and all container Classes exist under the

CICS32KSample project and the sample.cics.data package.

The second section is identical to the writeToWorkspace from CICS/IMS Data
Binding, with the difference in the values being used.

Among the described tasks, the Ant file contains two additional helper tasks. The

createProject task, as its name implies, it is used for project creation. The

importResourceAdapter task is used for importing resource adapter and creating

a connector project cicseci7102

Layout of J2C Java Bean Ant scripts. See Listing 3 below;

Listing 3. Sample Code for J2C Java Bean Ant script

<?xml version="1.0" encoding="UTF-8"? >

<project default="J2CBeanGeneration1"

 name="/CICS32KSample/EC03.xml"

 xmlns:adapter="http://com.ibm.adapter"

 xmlns:j2c="http://com.ibm.adapter.j2c" >

 <target name="Init1" >

 <property name="debug" value="true"/ >

 <property name="project1" value="CICS32KSample"/ >

 <property name="ra.project" value="cicseci7102"/ >

 <property name="ra.runtime" value="WebSphere Application Server

v7.0 stub"/ >

 <property name="ra.file"

value="D:\IBM\SDP751\ResourceAdapters\cics15\cicseci7102.rar"/ >

 </target >

 <target depends="Init1" name="DataBinding1" >

 <adapter:createProject projectName="${project1}"

 projectType="Java"

 sourceFolder="src"/ >

 <eclipse.refreshLocal depth="infinite" resource="${project1}"/ >

 <eclipse.incrementalBuild project="${project1}"/ >

 </target >

 <target depends="DataBinding1" name="importResourceAdapter1" >

 <j2c:importResourceAdapter addToEAR="no"

 connectorFile="${ra.file}"

 connectorModule="${ra.project}"

 Page 47 of 75 “Rational Support Whitepaper”

 targetRuntime="${ra.runtime}"/ >

 </target >

 <target depends="importResourceAdapter1" name="J2CBeanGeneration1"

>

 <adapter:createProject projectName="${project1}"

 projectType="Java"

 sourceFolder="src"/ >

 <j2c:generateService >

 <j2c:buildService class="EC03" package="sample.cics" >

 <j2c:method >

 <j2c:methodName value="invoke"/ >

 <j2c:methodInput

value="/CICS32KSample/src/sample/cics/data/EC03ChannelRecord.java"/ >

 <j2c:methodOutput

value="/CICS32KSample/src/sample/cics/data/EC03ChannelRecord.java"/ >

 <j2c:interactionSpec

class="com.ibm.connector2.cics.ECIInteractionSpec" >

 <adapter:propertyGroup

name="INTERACTION_SPEC_PROPERTY_PG" >

 <adapter:propertyElement name="functionName"

value="EC03"/ >

 <adapter:propertyElement name="commareaLength" value="-

1"/ >

 <adapter:propertyElement name="replyLength" value="-1"/

>

 <adapter:propertyElement name="executeTimeout"

value="0"/ >

 <adapter:propertyElement name="interactionVerb"

value="1"/ >

 </adapter:propertyGroup >

 </j2c:interactionSpec >

 </j2c:method >

 <j2c:managedConnectionFactory

class="com.ibm.connector2.cics.ECIManagedConnectionFactory"

 target="MyDefaultJNDIName" >

 <adapter:propertyGroup

name="MANAGED_CONNECTION_FACTORY_CLASS_PROPERTIES" >

 <adapter:propertyGroup name="Server" >

 <adapter:propertyElement name="ConnectionURL"

value="myURL"/ >

 <adapter:propertyElement name="ServerName"

value="myServer"/ >

 </adapter:propertyGroup >

 <adapter:propertyGroup name="UserVerification" >

 <adapter:propertyElement name="UserName"

value="myName"/ >

 <adapter:propertyElement name="Password"

value="myPassword"/ >

 </adapter:propertyGroup >

 <adapter:propertyElement name="TraceLevel" value="2"/ >

 <adapter:propertyGroup name="Security"/ >

 </adapter:propertyGroup >

 </j2c:managedConnectionFactory >

 <j2c:connectionSpec

 Page 48 of 75 “Rational Support Whitepaper”

class="com.ibm.connector2.cics.ECIConnectionSpec"/ >

 <j2c:resourceAdapter project="${ra.project}"/ >

 </j2c:buildService >

 <adapter:writeToWorkspace

writer="{com/ibm/adapter/j2c/codegen/writer}J2CAnnotationWorkspaceRes

ourceWriter">

 <adapter:propertyGroup name="J2C Java Bean Writer Properties"

>

 <adapter:propertyElement name="Project"

value="CICS32KSample"/ >

 <adapter:propertyElement name="PackageName"

value="sample.cics"/ >

 <adapter:propertyElement name="InterfaceName" value="EC03"/

>

 </adapter:propertyGroup >

 </adapter:writeToWorkspace >

 </j2c:generateService >

 <eclipse.refreshLocal depth="infinite" resource="${project1}"/ >

 <eclipse.incrementalBuild project="${project1}"/ >

 </target >

</project >

 Page 49 of 75 “Rational Support Whitepaper”

Customization

In order to customize the J2C Ant scripts, you need to know the following:

 What property to change

 What property value to set

 Where can you find the lists of valid property values

Some of the properties can be easily identified from the J2C UI, and you can view
the list of possible values in a drop-down list.

Create Project Type

 Basic Information

There are three project types that you can set:

o Java

o Web
o EJB

The sourceFolder represents the source folder in the project. The Java

project creation wizard allows users to change the source folder default

name or create multiple source folders. The Web and EJB projects require

the runtimeName to be specified. The runtimeName is a string that can be

determined from the preference page in the Runtime Environments under

the Server option.

Note: The ${project1} value for the projectName is an Ant variable

defined through <property name="project1" value="CICS32KSample"/>.

 Information in Ant Script

Listing 4. Create Java project in Ant script

<adapter:createProject projectName="${project1}"

 projectType="Java"

 sourceFolder="src"/>

 Page 50 of 75 “Rational Support Whitepaper”

The code snippet in Listing 5 shows how to create a Web project.

1. In addition to the projectType, you need to specify the runtimeName.

Listing 5. Sample code for create Web Project in Ant script

<adapter:createProject projectName="${project1}"

 projectType="Web"

 runtimeName="WebSphere Application Server

v7.0">

If add To EAR is specified when you create the Web project, you need to specify

the EARProjectName and addToEAR option besides the runtimeName.

Listing 6. Sample code for create Web Project with EAR in Ant script

 <adapter:createProject EARProjectName="MyWebEAR"
 addToEAR="yes"

 projectName="${project1}"

 projectType="Web"

 runtimeName="WebSphere Application Server

v7.0"/>

The code snippet in Listing 7 shows how to create an EJB project.

2. In addition to the projectType, you need to specify the runtimeName.

Listing 7. Sample code for create EJB Project in Ant script

<adapter:createProject projectName="${project1}"

 projectType="EJB"

 runtimeName="WebSphere Application Server

v7.0"/>

If add To EAR is specified when you create the EJB Project, you need to specify

the EARProjectName and addToEAR option besides the runtimeName.

Listing 8. Sample code for create EJB Project with addToEAR enabled in

Ant script

<adapter:createProject EARProjectName="MyEJBEAR"

 addToEAR="yes"

 projectName="${project1}"

 projectType="EJB"

 Page 51 of 75 “Rational Support Whitepaper”

 runtimeName="WebSphere Application Server

v7.0"/>

Information in wizard

The Project Type is located in the New Source Project Creation wizard as
shown in figure 26.

Figure 26.Different Project Type in wizard

The Web Project Type EAR Project Name and Option "Add EAR to Project" is
located in New Dynamic Web Project wizard as shown in figure 27.

 Page 52 of 75 “Rational Support Whitepaper”

Figure 27.Web Project creation

The EJB Project Type EAR Project Name and Option "Add EAR to Project" is

located in New EJB Project wizard as shown in figure 28.

 Page 53 of 75 “Rational Support Whitepaper”

Figure 28.EJB Project options

 Page 54 of 75 “Rational Support Whitepaper”

queryResult

 Basic Information

The queryResult represents the COBOL structures to be selected in the

resulted query. When the COBOL file is analyzed a query is executed and

the returned result can be a flat or nested structure of COBOL elements.

 Information in Ant Script

Listing 9. Sample queryResult section in J2C Java Bean Ant script

 <adapter:queryResult>
 <adapter:selectElement name="DATECONTAINER"/>

 <adapter:selectElement name="TIMECONTAINER"/>

 <adapter:selectElement name="INPUTCONTAINER"/>

 <adapter:selectElement name="OUTPUTCONTAINER"/>

 <adapter:selectElement name="LENGTHCONTAINER"/>

 </adapter:queryResult>

 Information in wizard

Figure 29.queryResult and the corresponding page in wizard

 Page 55 of 75 “Rational Support Whitepaper”

Discovery Agent

 Basic Information

Some of the properties are implicit and do not show up in the J2C UI. One
example is the Discovery Agent ID.

You will not see any of the agent name

"{com/ibm/adapter}MPOCobolDiscoveryAgent" in the UI. However, if you

select the language mapping to be COBOL CICS Channel to JAVA or

COBOL MPO to Java, then you will see the agent name generated in the
Ant script.

COBOL CICS Channel to Java is using the same pattern as MPO COBOL to

Java, so they are using the same discovery agent.

 Information in Ant Script

Listing 4 shows the agent name when you select

COBOL_CICS_CHANNEL_TO_JAVA or COBOL_MPO_TO_JAVA
mapping.

Listing 10. Sample Discovery Agent section in J2C Java Bean Ant script

 <adapter:discover>
 <adapter:performImport

agent="{com/ibm/adapter}MPOCobolDiscoveryAgent">

 <adapter:importResource>

 <adapter:propertyGroup name="CobolFileGroup">

 <adapter:propertyElement name="CobolFile"

value=

"D:\70Shared\plugins\com.ibm.j2c.cheatsheet.content_7.0.1\Samples\CIC

S32K\ec03.ccp"/>

 </adapter:propertyGroup>

 Information in wizard

The choose Mapping is located in the Data Import page inside the
CICS/IMS Data binding wizard and J2C Bean wizard.

 Page 56 of 75 “Rational Support Whitepaper”

Figure 30. Discovery agent and the corresponding page in wizard

 Page 57 of 75 “Rational Support Whitepaper”

Resource Writer

 Basic Information

While a Discovery Agent reads the language files to generate an in

memory model of the artifacts to be generated, the Workspace Resource

Writer takes the model and generates the artifacts using the properties

specified by the user. And the same as for the agent, the writer is

transparent to the user throughout the wizard. Its ID surfaces in the Ant
script only.

 Information in Ant Script

Listing 11. writer and and write properties in Data Binding Ant script

<adapter:writeToWorkspace

writer="{com/ibm/adapter/cobol/cicschannel/writer}JAVA_WRITER" >

 <adapter:propertyGroup name="MPO_PG">

 <adapter:propertyElement name="Project Name"

value="CICS32KSample"/ >

 <adapter:propertyTree name="MPO_TP" >

 <adapter:propertyNode name="COBOLMPOToJavaResourceWriter" >

 <adapter:propertyGroup name="Java Type Name" >

 <adapter:propertyElement name="Project Name"

value="CICS32KSample"/ >

 <adapter:propertyElement name="Package Name"

value="sample.cics"/ >

 <adapter:propertyElement name="Class Name"

value="EC03ChannelRecord"/ >

 <adapter:propertyElement name="Overwrite existing class"

value="true"/ >

 <adapter:propertyElement name="CHANNEL_NAME"

value="InputRecord"/ >

 </adapter:propertyGroup >

 </adapter:propertyNode >

 <adapter:propertyNode name="COBOLImportResult0" >

 <adapter:propertyGroup name="COBOLToJavaResourceWriter" >

 <adapter:propertyGroup name="Java Type Name" >

 <adapter:propertyElement name="Project Name"

value="CICS32KSample"/ >

 <adapter:propertyElement name="Package Name"

value="sample.cics"/ >

 <adapter:propertyElement name="Class Name"

value="DateContainer"/ >

 <adapter:propertyElement name="Overwrite existing class"

value="true"/ >

 <adapter:propertyElement name="GenerationStyle"

value="Default"/ >

 <adapter:propertyElement name="CONTAINER_NAME"

value="CURRENTDATE"/ >

 <adapter:propertyElement name="CONTAINER_TYPE"

value="BIT"/ >

 Page 58 of 75 “Rational Support Whitepaper”

 </adapter:propertyGroup >

 </adapter:propertyGroup >

 </adapter:propertyNode >

Listing 12. writer and and write properties in J2C Bean Ant script

<adapter:writeToWorkspace

writer="{com/ibm/adapter/j2c/codegen/writer}J2CAnnotationWorkspaceRes

ourceWriter">

 <adapter:propertyGroup name="J2C Java Bean Writer Properties">

 <adapter:propertyElement name="Project"

value="CICS32KSample"/ >

 <adapter:propertyElement name="PackageName"

value="sample.cics"/>

 <adapter:propertyElement name="InterfaceName" value="EC03"/>

 </adapter:propertyGroup >

</adapter:writeToWorkspace>

 Information in wizard

The write properties for the COBOLTOJavaResourceWriter is located in the

Saving Properties page of the CICS/IMS Data Binding as shown in previous

section from figure 5 through figure 10. This includes the Project,
PackageName and InterfaceName.

The write properties for the J2CAnnotationWorkspaceResourceWriter is

located in J2C Java bean Output Properties page as shown below in figure
22. This includes the Project, PackageName and InterfaceName.

 Page 59 of 75 “Rational Support Whitepaper”

Figure 31. J2C Java Bean Output Properties page

 Page 60 of 75 “Rational Support Whitepaper”

Running Ant Script

Running Ant Script in the workspace

Here are the steps to run the ant script inside the Rational Application Developer

for WebSphere Software v7.5

 Bring up a clean workspace.

 Create a Project and copy the generated ant script into the project. In this

example, we will copy the EC03InputChannelRecord.xml which will

generate the Channel data binding files and the container data binding

files.

 Right Click on the Ant script file and select Run As > 3 Ant Build.. as

shown in figure 32. You only need to do this once in each workspace to set

up the JRE environment. The next time you can select Run As > 2 Ant
Build

Figure 32. Run As > 3 AntBuild

 In the Edit Configuration and launch page, click on the JRE tab.

 Page 61 of 75 “Rational Support Whitepaper”

Figure 33. Setting up JRE

 Select run in the same JRE as the workspace.

 Page 62 of 75 “Rational Support Whitepaper”

Figure 34. Same JRE as the workspace

 Click on the Run button to execute the ant script

 Page 63 of 75 “Rational Support Whitepaper”

Figure 35. Run Ant script

 In the Console, you will see the execution progress of the ant script. if you

see "Build Success", the ant script is executed successfully

 Page 64 of 75 “Rational Support Whitepaper”

Figure 36. Console

 In the Enterprise Explorer view, you will see the generated data binding

files.

 Page 65 of 75 “Rational Support Whitepaper”

Figure 37. Generated files

 Page 66 of 75 “Rational Support Whitepaper”

Running Ant Script from command line

The generated Data binding Ant scripts can be executed without launching the

eclipse workbench. Once generated or modified, you can execute a script from

the Microsoft Windows command line without bringing up the IDE. Running

Rational Application Developer for WebSphere Software in this way is called

headless mode. To run the Ant script, invoke the antRunner application passing

the Ant file as argument. A simple batch file for running the generated Ant scripts

in headless mode is shown in Listing 14, following:

Listing 14. Batch file to invoke data binding Ant script

echo on

setlocal

set ECLIPSE="D:\IBM\SDP750"

set WORKSPACE=D:\workspace\testAntCICS32K

set BUILDFILE=D:\workspace\EC03InputChannelRecord.xml

set JAVA_HOME=%ECLIPSE%\jdk

SET

EQUINOXJAR=%ECLIPSE%\plugins\org.eclipse.equinox.launcher_1.0.100.v20

080509-1800.jar

set PATH=%JAVA_HOME%\bin;%PATH%

set CLASSPATH=%JAVA_HOME%\lib;%CLASSPATH%

echo "Generating the databinding file.."

java -cp %EQUINOXJAR% org.eclipse.core.launcher.Main -clean -data

%WORKSPACE%

-application org.eclipse.ant.core.antRunner -buildfile %BUILDFILE%

Where:

 ECLIPSE environment variable defines the path to the eclipse folder

within Rational Application Developer for WebSphere Software

 WORKSPACE defines the path where the workspace will be created

 BUILDFILE is the path to your generated Ant script you would like to

run.

To run the Ant file generated from the CICS/IMS Data Binding session, modify the

values of the following variables in the Test.bat batch file to fit your environment.

 Replace the value for ECLIPSE with your eclipse root directory (where

eclipse.exe is located)

 Replace the value for WORKSPACE with the workspace name and location

 Replace the value for BUILDFILE with your J2C Ant script

 Make sure that the %EQUIOXJAR% is correct, check if that jar file exists.

The name of the org.eclipse.equinox.launcher_xxx.jar may be different,
then you need to make modifications

 Page 67 of 75 “Rational Support Whitepaper”

If the debug property is set to True, you should see progress messages and a

BUILD SUCCESSFUL message at the end. You can also browse to the target
workspace to see the generated files.

To run the Data binding ant script from the command line, you can invoke

Test.bat as show in figure 38.

Figure 38. Console showing Ant script execution

After the test.bat completes successfully, you can go to the workspace and all the

projects and data binding files are created, as shown in figure 37.

 Page 68 of 75 “Rational Support Whitepaper”

Figure 39 Generated data binding files by Ant script

 Page 69 of 75 “Rational Support Whitepaper”

Tips

The default WebSphere Application Server runtime is v7.0 in Rational Application

Developer for WebSphere Software v7.5.x.

For Java project, this is the default runtime always selected when you execute the

ant script.

Always ensure the following projects are consistent in their WebSphere

Application Server runtime and JRE level to avoid undesired behavior.

 Connector project

 Project for Data binding generation

 Project for J2C Java Beans generation (can be same project as Data binding

generation)

To modify the WebSphere Application Server runtime in the project, do one of the

following to bring up the Java Build Path

 Click on the project and select Properties and click Java Build Path

or

 Click on the project, select Build Path > Configure Built Path

 Page 70 of 75 “Rational Support Whitepaper”

You can select Add Library to select the right Server runtime version and JRE

version you want.

To change the Server Runtime.

Select Server runtime in the Add Library

Select the server runtime you desired, press Finish.

 Page 71 of 75 “Rational Support Whitepaper”

To change JRE version, in Add Library.

Select Alternate JRE, click on Installed JREs.. button

 Page 72 of 75 “Rational Support Whitepaper”

Select the JRE you desire.

 Page 73 of 75 “Rational Support Whitepaper”

 Page 74 of 75 “Rational Support Whitepaper”

Summary

This article has shown you how to create J2C Java Beans and Data Binding beans

from a Cobol program that support CICS Channel and save the session
information into an Ant scripts.

You can run the ant script to regenerate the same artifacts without going through
the wizard again.

You can also customize the ant script to generate similar artifacts.

Resources

Learn

 The out-of-service date of your version of the WebSphere Application

Server.

 Using Ant with WebSphere Studio Application Developer.

 Troubleshooting headless Ant builds with Rational Application Developer.

 Exploiting CICS Channels and Containers from Java clients,

 In the Architecture area on developerWorks, get the resources you need to

advance your skills in the architecture arena.

 Browse the technology bookstore for books on these and other technical

topics.

Discuss

 Check out developerWorks blogs and get involved in the developerWorks

community.

http://www.ibm.com/software/support/lifecycle/
http://www.ibm.com/software/support/lifecycle/
http://www.ibm.com/developerworks/websphere/library/techarticles/0203_searle/searle1.html/
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0505_weisz/0505_weisz.html/
http://www.ibm.com/developerworks/websphere/library/techarticles/0810_wakelin/0810_wakelin.html/
http://www.ibm.com/developerworks/architecture
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community/
http://www.ibm.com/developerworks/community/
http://www.ibm.com/developerworks/community/

 Page 75 of 75 “Rational Support Whitepaper”

About the Authors

Laszlo is currently working on the Adapter Tooling team in the IBM

WebSphere area. He has a University and a Master's degree in Computer

Science.

 Ivy leads the Java Connector Tools team for Rational software. She

earned a degree in mathematics with honors (major in computer science, minor

in statistics) from the University of Waterloo. She is a certified Project

Management Professional (PMP).

